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ABSTRACT

The assimilation of wind observations in the form of speed and direction (asm_sd) by the Weather Research

and Forecasting Model Data Assimilation System (WRFDA) was performed using real data and employing

a series of cycling assimilation experiments for a 2-week period, as a follow-up for an idealised post hoc

assimilation experiment. The satellite-derived Atmospheric Motion Vectors (AMV) and surface dataset in

Meteorological Assimilation Data Ingest System (MADIS) were assimilated. This new method takes into

account the observation errors of both wind speed (spd) and direction (dir), and WRFDA background quality

control (BKG-QC) influences the choice of wind observations, due to data conversions between (u,v) and (spd,

dir). The impacts of BKG-QC, as well as the new method, on the wind analysis were analysed separately.

Because the dir observational errors produced by different platforms are not known or tuned well in WRFDA,

a practical method, which uses similar assimilation weights in comparative trials, was employed to estimate the

spd and dir observation errors. The asm_sd produces positive impacts on analyses and short-range forecasts of

spd and dir with smaller root-mean-square errors than the u,v-based system. The bias of spd analysis decreases

by 54.8%. These improvements result partly from BKG-QC screening of spd and dir observations in a direct

way, but mainly from the independent impact of spd (dir) data assimilation on spd (dir) analysis, which is the

primary distinction from the standard WRFDA method. The potential impacts of asm_sd on precipitation

forecasts were evaluated. Results demonstrate that the asm_sd is able to indirectly improve the precipitation

forecasts by improving the prediction accuracies of key wind-related factors leading to precipitation (e.g. warm

moist advection and frontogenesis).

Keywords: WRFDA, observation operator, observation error, quality control, variational assimilation

1. Introduction

Many types of platforms measure winds, such as surface

land and marine observation networks, upper-air observation

networks, aircraft and remote sensing systems. Generally,

wind speed (spd) and direction (dir) are the initial products;

however, the nature of wind vector measurements varies

among these platforms. For example, surface winds (spd

and dir) are typically measured by an anemometer on a

fixed or drifting platform by a defined time-average.1 For

aircraft-based observations, spd and dir are computed by

taking the difference between the ground track vector,2

which includes a Global Position System (GPS)-observed

speed and angle based on the latitude and longitude change

between adjacent points, and the aircraft track vector,

which is derived from the true air speed3 and the internal

navigation system heading (Painting, 2003; Gao et al.,

2012). Atmospheric Motion Vectors (AMV), in the forms

of spd and dir, are derived from satellite imagery by

tracking features over a sequence of images (Velden

*Corresponding author.

email: fgao@ucar.edu
1www.nws.noaa.gov/asos/pdfs/aum-toc.pdf

2Horizontal speed in which the aircraft moves relative to a fixed

point on the ground.
3Speed in which the aircraft moves relative to the surrounding air.
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et al., 1998; NOAA Technical Report4; EUMETSAT

report5).

The standard Weather Research and Forecasting Model

Data Assimilation System (WRFDA) assimilates wind

observations in the form of longitudinal and latitudinal com-

ponents, conventionally abbreviated to u and v (asm_uv),

which are computed from the initial observation product

of spd and dir (Huang et al., 2009; Barker et al., 2012). This

method is similar to other data assimilation systems, such

as those described by Le Dimet and Talagrand (1986),

Andersson et al. (1998) and Gustafsson et al. (2001).

In asm_uv, during the observation processing phase,

which precedes assimilation, only the observational error

associated with spd is used to quantify errors in u and v

(Kalnay et al., 1996; Lindskog et al., 2001). This process

allows the background quality control (BKG-QC) to

proceed, thereby screening observations and computing

a cost function based on the assimilation weight for wind-

related terms.

However, the dir observational error, which can con-

tribute uncertainty to u and v, is typically ignored. In fact,

a nonlinear relationship exists between the observational

errors of u and v and the errors in spd and dir. As eqs. (16)

and (17) in Huang et al. (2013) indicate, the impact of

dir observational error on the errors in u and v is both

significant and sensitive to the background. As a result, dir

observational error should not be ignored in wind data

assimilation.

A new assimilation method for wind observations,

which employs direct assimilation of spd and dir (asm_sd),

has been developed for WRFDA (Huang et al., 2013).

This method considers the dir observational error as being

independent of the spd observational error, and thus the

corresponding weights of spd or dir observations in the

analysis are affected exclusively by the respective spd or dir

observational errors.

Because it is not straightforward to build equivalent

relationships among the wind measurement errors expre-

ssed in each format (Euclidean vs. radial) and the back-

ground errors of stream function/velocity potential, it is

inaccurate to assume that asm_uv and asm_sd are equiva-

lent in terms of assimilation variables due to the accuracy of

transforming u and v from spd and dir. Additionally, the

BKG-QC routine determines which wind observations to

retain in different ways in asm_uv versus asm_sd, such that

the accepted observations could vary even when the same

dataset is used.

Distinct differences exist for the assimilation methods

for spd and dir. In asm_sd, the spd (dir) observation and its

error have an independent impact on the spd (dir) analysis.

By comparison, the spd analysis is also affected by dir

observations in addition to the spd observations in asm_uv.

In other words, the spd analysis varies with the dir

observation when the spd observation and the observa-

tional errors of u and v are constant in asm_uv, and the

opposite is true for dir. These distinctions are responsible

for generating different wind analyses in asm_uv compared

to asm_sd.

Three key factors highlight the advantages of asm_sd

real experiments:

(1) BKG-QC is able to screen spd or dir observations

out separately in a direct way in asm_sd. This is an

advantage because there is not an effective mechan-

ism to guarantee that u and v components computed

from a spd or dir observations, that can have

substantial errors, will be screened out in asm_uv.

(2) The formulation of asm_sd ensures that the spd and

dir analysis falls between the background and

observations for both variables. In asm_uv, when u

or v components point in opposite directions to

the background, the asm_uv could produce a spd

analysis with magnitude much smaller than what it

should be. An extreme case could result in a spd of

zero in the analysis regardless of spd in the back-

ground and observations (Fig. 1).

(3) Unlike most surface observation stations that in-

dependently observe spd and dir, AMV and aircraft-

based wind measurements are calculated from vector

differences, which could lead to error correlation

between dir and spd. Regardless, it is more accurate

to assume that the spd observational error is inde-

pendent from the dir error than to assume the same

for u and v because observation error in either spd or

dir affects the observational errors of both u and v

simultaneously. This assumption, widely used in this

type of work (e.g. Hollingsworth and Lönnberg,

1986), simplifies the observation error covariance

matrix to a diagonal matrix and is more acceptable

in three dimensional variational data assimilation

(3D-Var) versus 4D-Var, where some successive

reports from the same station could be assimilated

(Jarvinen et al., 1999).

Initial comparisons between asm_uv and asm_sd by using

simplified arguments and graphical illustrations were con-

ducted by Huang et al. (2013). Although the superiority of

asm_sd was demonstrated by Observation System Experi-

ments (OSEs), the forecast model was assumed to be error

free, and the ‘true’ observational errors of spd and dir were

4rammb.cira.colostate.edu/projects/goes-p/NOAA_Technical_Re-

port_141_GOES-15_Science_Test.pdf
5www.star.nesdis.noaa.gov/star/documents/seminardocs/EUMet_

Products.pdf
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predefined instead of truly known. Additionally, observa-

tions were assimilated without any quality control. Un-

fortunately, none of these assumptions and conditions are

valid for any experiment using real data. While this topic

has never been directly addressed, the issue of estimating

spd and dir observational error in relation to the BKG-QC

procedures has previously been raised: how should spd and

dir observation errors be calculated in practice?

Several studies suggest comparing an observation with

an uncorrelated reference. Benjamin et al. (1999) reported

on a collocation study for Aircraft Communications

Addressing and Reporting System (ACARS) observations

generated from aircraft with different tail numbers. Like-

wise, Drüe et al. (2008) estimated the observation errors of

Aircraft Meteorological Data Relay (AMDAR) by con-

sidering rawinsonde observations (RAOB) as the reference.

With Tropospheric Airborne Meteorological Data Report-

ing (TAMDAR) becoming an important part in the global

observing system, Moninger et al. (2010) presented error

characteristics of TAMDAR by comparing them with the

Rapid Update Cycle (RUC) 1-h forecast. Although strict

collocation conditions were used, these estimations actually

only provide an upper bound on the combined errors of

observation, reference and representativeness.

Meanwhile, the variable dir is not involved in these studies.

Gao et al. (2012) calculated spd and dir observational error,

independent from any reference, of TAMDAR and RAOB

by matching up three types of data sources. This method is

theoretically suitable for any observation type; however, it is

difficult to implement thatmethod because no other available

data type has sufficient coverage to co-locate with surface

data over the continental United States (CONUS). Conse-

quently, a practical method is employed in this study to

estimate the spd and dir observation errors, which are used to

obtain similar assimilation weights for wind observations in

asm_uv and asm_sd, as in the initial test.

Since dir observations can be screened out directly by BKG-

QC in asm_sd, it is necessary and reasonable to define a

critical value of dir innovation to decrease the possibility of

absorbing dir observations that are grossly in error. Some

studies have demonstrated that a large dir error is often

correlated to light spd (Plant, 2000; Gao et al., 2012), which

could be related to mesoscale variability, especially given

turbulence in the boundary layer (Benjamin et al., 1999).

In the initial test, we use 908 as the dir innovation

threshold in BKG-QC. Note that any dir observation with

innovation exceeding 908 is not regarded by the authors as

necessarily indicating the observation is erroneous. Rather,

the implementation is used to emphasise the impact of dir

observations on the spd analysis in asm_uv in the situation

that the vectors of background and observation are located

in different quadrants. Although any dir innovation except

zero could lead to this situation, it is assured to be rejected

by restricting dir innovation to B908.
Unless there is equivalency of the dir between observa-

tion and background, when assuming equal assimilation

weights for wind observations in asm_uv and asm_sd, the

scalar nature of spd generates a smaller spd innovation

in asm_sd than the spd innovation converted from u and

v innovations in asm_uv. Therefore, to avoid using spd

observations with a bias towards larger spd innovations,

the magnitude of the allowed spd innovation should be

reduced in asm_sd, as compared to asm_uv.

Given that wind observations from different platforms

with unique error characteristics (e.g. Plant, 2000; Drüe

et al., 2008; Gao et al., 2012) are being used even when

dir observation errors are rarely known, the varied nature

of these input sources could increase the uncertainty of

assimilation results.

This study is primarily designed to evaluate the perfor-

mance of asm_sd in assimilating the satellite-derived AMV

and surface-based dataset in Meteorological Assimilation

Data Ingest System (MADIS),6 which provides the best

coverage over CONUS.

6madis.noaa.gov

BKG2

BKG1

BKG1

OBS29

6

3

30°30°

20°

20°

1–1–3–5 3 5

OBS1

(ms–1)

(ms–1)

Fig. 1. Diagram of background wind vectors (BKG1 and BKG2)

and the observational wind vectors (OBS1 and OBS2), used to pre-

sent the differences of WRFDA background quality control pro-

cedures (BKG-QC) between asm_uv (standard assimilation method

in WRFDA, assimilating wind observation in the forms of u and v

components) and asm_sd (new assimilation method, assimilating

wind observation in the forms of wind speed and direction).
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When using an observation that is already assimilated

into the background for verification reference, the obtained

analysis correlates with the observation; thus, the verifica-

tion for experiments may be biased because aliasing will

inherently favour the experiment with larger assimilation

weights for observations. This study evaluates model anal-

yses and short-range forecasts against RAOB, which were

not used in the assimilation, and are thus fully independent

from analyses and forecasts. Finally, a precipitation event

that occurred during the experimental period was chosen to

further explore the indirect impacts of asm_sd on pre-

cipitation prediction in the full-cycle assimilation scheme.

The precipitation reference is National Centers for Envir-

onmental Prediction (NCEP) Stage IV analysis with a

resolution of 4 km (Lin and Mitchell, 2005).

The remainder of the paper is arranged as follows. In

Section 2, we provide an overview of the new method and

discuss distinctions concerning BKG-QC between asm_uv

and asm_sd by using two cases. Section 3 describes the

model configuration, the estimation of observation errors

of spd and dir, and experiment design. The statistical results

of evaluation and a precipitation case study are presented

in Section 4. Finally, conclusions and an outlook for future

research are provided in Section 5.

2. BKG-QC in the assimilation of wind speed and

direction

The formulation of asm_sd apart from the details of BKG-

QC is described in Huang et al. (2013). In brief, the

variables related to wind in the innovation vector, observa-

tion error covariance and observation operators that par-

ticipate in the cost function [Huang et al., 2013; eq. (1)] are

transformed from u and v in asm_uv to spd and dir in

asm_sd. Thus, the observation error covariance matrix

Rasm_sd in asm_sd has variances of observation errors of

spd and dir on the diagonal, replacing u and v in Rasm_uv:

Rasm uv ¼

. .
.

0 0 0

0 r2
u 0 0

0 0 r2
v 0

0 0 0 . .
.

0
BBBB@

1
CCCCA
) Rasm sd

¼

. .
.

0 0 0
0 r2

spd 0 0

0 0 r2
dir 0

0 0 0 . .
.

0
BBBB@

1
CCCCA

(1)

In this study, the observation errors of u and v in asm_uv, su

and sv, employ the default errors defined in the WRFDA

error table (Kalnay et al., 1996), and the observation errors of

spd and dir, sspd and sdir, will be estimated in the next section.

The basic procedures of quality control, which are

performed on observations before assimilation, include

assessing vertical consistency (super adiabatic and wind

shear checks) and a dry convective adjustment. Addition-

ally, like in most data assimilation systems, the innovation

and observation error are used in BKG-QC in WRFDA to

determine data retention. Any observation yi is rejected if

di > n� ri (2)

where di is the innovation (i.e. observation yi minus the

corresponding background), si is the error for observation

yi, and n represents a fixed multiple of the observation

error, which is set to 5 as default in WRFDA.

As stated above, asm_sd can generate a smaller spd

innovation than asm_uv due to the scalar nature of spd

under certain conditions. This conclusion can be explained

similarly by Huang et al. (2013; Fig. 8), where u and v

differences from reference are roughly 1.6 times of spd

difference. Based on the statistics, n is defined as 3 for spd

BKG-QC in asm_sd for this study.

In asm_sd, yi and si denote the spd or dir observation

and its observational error, respectively. Thus, a spd or dir

observation can be retained or directly screened out.

However, eq. (2) is not able to effectively block a spd or

dir observation grossly in error from being assimilated in

asm_uv, because u and v innovations are not necessary for

assessing eq. (2) when spd and dir innovations meet the

requirements. Two cases illustrated in Fig. 1 present the

differences in BKG-QC between asm_uv and asm_sd,

where the spd observations and backgrounds are assumed

to be equal for simplification, and spd observation error is

defined as 2ms�1.

In case 1 (OBS1 and blue BKG1), a dir component of

OBS1 with innovation exceeding 908 is rejected and only

the spd component is assimilated into the analysis in

asm_sd. By comparison, the u component of OBS1 is

contaminated by the dir component being grossly in error,

and even with an innovation score of 9.0ms�1 (less than 5x

the observation error, 10.0ms�1), it is still assimilated into

asm_uv. The assimilation produces a spd analysis falling

outside the interval defined by the background and

observation, as in Huang et al. (2013; Fig. 1).

In extreme situations, when assuming the equality of

observation error and background error, the OBS1 and

green BKG1 (with magnitudes �4.7ms�1) will produce

zero spd analysis in asm_uv. It would be preferable for

a reasonable spd analysis to maintain a magnitude close

to both the background and observation (�4.7ms�1).

Based on this case, there will always be a set of u and v

observation errors leading to a spd analysis of zero in

asm_uv when the dir innovation exceeds 908, regardless of
the magnitude of spd in background and observation.
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In case 2, OBS2 is a good observation to be used in

asm_sd; however, the u component of OBS2 is rejected in

asm_uv due to the u innovation being larger than 10ms�1.

Thus, the positive impacts of the good observation are lost

in asm_uv. Although these counterexamples cannot lead to

a conclusion that BKG-QC in asm_sd is uniformly superior

to that of asm_uv, the former is more effective and rea-

sonable than the latter based on these two simple cases.

Typically, situations like case 1 are often observed near the

surface, and situations similar to case 2 more frequently

occur at higher altitudes.

3. Experimental framework

3.1. Model configuration

The Weather Research and Forecasting (WRF) model

(Skamarock et al., 2008) was run with 15-km grid spac-

ing on a 334�223 horizontal grid domain covering the

CONUS and surrounding oceans (Fig. 2), using 37 vertical

levels laid out with the model top at 50 hPa. The MADIS

AMV and surface (including temperature, relative humid-

ity and surface pressure in addition to spd and dir) datasets

are used in this study. The experimental domain is shown

in Fig. 2, as an example of the observation distributions

on 0000 UTC 1 August 2013. Compared with the average

distribution of AMV by time window, most surface data

are centred 91 h around the analysis time, which improves

the accuracy of assimilation by narrowing the time gap

between the background and observations.

The experimental window begins at 0000 UTC 1 August

2013 and lasts for 2 weeks. The assimilation employs 3D-

Var, and runs four times at 0000, 0600, 1200 and 1800 UTC

per day with 6-h cycling (i.e. the 6-h forecast initialised

from the previous analysis is considered as background).

The time window of the assimilation was 3 h on either side

of the analysis time. The National Meteorological Center

(NMC) method (Parrish and Derber, 1992) was employed

to generate the regional background error covariance

using the prior 1-month of differences between WRF 12

and 24-h daily forecasts, replacing the existing global

estimation (Wu et al., 2002). Lateral boundary conditions

for WRF forecasts were provided by NCEP 0.58�0.58
global forecasts.

3.2. The wind speed and direction observation errors

The estimation of spd and dir observation errors is imple-

mented by first calculating the background error generated

by the NMC method for the variables u, v, spd and dir and

scaling the observation errors of u and v from the existing

WRFDA system:

ro
spd=dir ¼ rb

spd=dir �
ro

u=v

rb
u=v

(3)

Here, the subscripts (u, v, spd and dir) denote the assi-

milation variables in asm_uv and asm_sd; so and sb are the

standard deviations of observation error and background

error, respectively; ro
u=v is defined based on WRFDA, and

surface | Time Window (hour): TW < 1 (nObs: 17861) | 1 < TW < 2 (nObs: 355) | 2  < TW< 3 (nObs: 213) |  

TW
(hour)

< 1
1–2
2–3

Height
(km)

< 1
1–2
2–3
3–4
4–5
5–6
6–7
7–8
8–9
9–10
10–11
11–12
12–13
13–14
>= 14

(a)

55N

50N

45N

35N

40N

30N

25N

20N

135W 130W 125W 120W 115W 110W 105W 100W 95W 90W 85W 80W 75W 70W 65W 60W

| Time Window (hour): TW < 1 | nObs: 7407 |Atmospheric Motion Vectors (AMV)
(b)

55N

50N

45N

35N

40N

30N

25N

20N

135W 130W 125W 120W 115W 110W 105W 100W 95W 90W 85W 80W 75W 70W 65W 60W

| Time Window (hour): 1 < TW < 2 | nObs: 8648 |Atmospheric Motion Vectors (AMV)
(c)

55N

50N

45N

35N

40N

30N

25N

20N

135W 130W 125W 120W 115W 110W 105W 100W 95W 90W 85W 80W 75W 70W 65W 60W

| Time Window (hour): 2 < TW < 3 | nObs: 9076 |Atmospheric Motion Vectors (AMV)
(d)

55N

50N

45N

35N

40N

30N

25N

20N

135W 130W 125W 120W 115W 110W 105W 100W 95W 90W 85W 80W 75W 70W 65W 60W

Fig. 2. The experimental domain and the spatial and temporal distributions of MADIS surface (a) and satellite-derived Atmospheric

Motion Vectors (AMV) observations (b�d) at 0000 UTC 1 August 2013 with the time window of 93 h. The observation count (nObs) is

shown by time window on top. The time window is denoted by colours in (a), and the vertical height is denoted by colours in (b�d).
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rb
spd=dir and rb

u=v will be estimated by eqs. (4) and (5).

Equation (3) ideally results in similar assimilation weights

for wind observations between asm_uv and asm_sd.

For any observation yi, the analysis increment (xa�xb)

is proportional to the background error covariance Bi

assuming a single model variable xi:

xa � xb ¼ Biðr2
b þ r2

oÞ
�1ðyi � xiÞ (4)

[also see eq. (8) in Huang et al., 2009]. Derived from eq.

(4), we have:

rb ¼ ro �
ðxb � xaÞ
ðxa � yiÞ

 !1
2

(5)

By using eqs. (4) and (5), the background errors of u, v, spd

and dir, i.e. rb
u, rb

v , rb
spd and rb

dir, were calculated, respec-

tively, by single observation tests (SOT) on every six grid

points on 12 standard pressure levels over the entire

experimental domain. The SOT assimilates single u, v, spd

or dir components per time at a chosen horizontal grid

point and vertical level.

Therefore, the SOT can provide the background error

for u, v, spd or dir at the observation location, which does

not include the impact of the horizontal correlation from

any other observation. The estimated background errors of

spd and dir by pressure are shown in Fig. 3. Because spd

background errors are similar to the background errors of

wind speed background error estimated
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Fig. 3. The background errors calculated by the National Meteorological Center (NMC) method for wind speed (a) and direction (b).

The background errors are estimated by eq. (5). The degree number in (b) denotes the maximum background error of wind direction

allowed for the statistics, and the percent number denotes how many grid points survive the statistics.
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(DIR) estimated by eq. (3) for MADIS surface wind (SFC) and

satellite-derived Atmospheric Motion Vectors (AMV) observations.
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u and v (not shown), the estimated spd observation error is

close to the observation errors of u and v.

The default spd observation error in WRFDA is also

used as the observation errors of u and v in asm_uv, and is

employed as the spd observation error (sspd) for asm_sd in

this study. The statistics of dir background error can be

impacted from situations where grid points with back-

ground errors deviate greatly from the general range of the

dir background error. To eliminate these unstable values,

we set a series of maxima below which the dir background

error on a grid point will be used in the calculation of the

average dir background error. The resulting options for

three similar profile patterns of dir background error are

presented in Fig. 3b. By setting the maximum to 208, dir
background errors decrease notably at every pressure level,

yet 93% of grid points are still used in the statistics.

Therefore, dir observation errors are estimated by using the

vertical profile of dir background errors with a maximum

of 208 (red line).

In Fig. 3, the background errors of spd and dir vary with

height, an effect also discussed for observation errors in

Gao et al. (2012). Generally, spd (background and ob-

servation) error increases with height, and the opposite is

true for dir. However, this pattern is not uniformly true,

as shown by the profile of dir observational errors indicated

in Fig. 4. Note that the spd and dir observation errors

estimated here are not intended to maintain consistency

with sensor errors, or to agree with the statistics in

WRFDA, but to get similar assimilation weights in asm_uv

and asm_sd between u and v errors and spd and dir errors.

For surface observations, constant spd and dir observation

errors are used despite the fact that instrumentation may be

placed at slightly different heights.

3.3. The experiment design

The differences of analyses produced by asm_uv and

asm_sd result from the impacts of differences in BKG-

QC and the assimilation method itself. To evaluate the

performance of asm_sd in these aspects, four assimilation

experiments are designed as follows:

(1) EX_uv is considered the control run, conventionally

employing asm_uv by using the default observation

errors defined in WRFDA;

(2) EX_sd employs asm_sd by using the estimated

observation errors of spd and dir in Fig. 4;

(3) EX_sd_uvobs employs asm_sd as EX_sd, but assim-

ilates the same observations used in EX_uv per

cycle;

(4) EX_sd_sfc employs asm_sd and asm_uv for assim-

ilating surface wind and AMV, respectively.

Since any other observation variable except wind employs

the same assimilation scheme among these four experi-

ments, we assume that the differences of wind analyses

between EX_uv and EX_sd are derived from the new assi-

milation method, although it partly includes the impact

from the different background at every cycle assimilation.

By comparing EX_uv with EX_sd_uvobs, the contribution

of the assimilation method itself can be verified due to the

same observations used. Thereafter, the impact of BKG-

QC can be estimated linearly by subtracting the improve-

ments produced by EX_sd_uvobs from those produced

by EX_sd, over EX_uv. Likewise, the exclusive impact of

asm_sd on the assimilation of surface wind or AMV

observations can be tested by comparing EX_uv with EX_

sd_sfc or EX_sd with EX_sd_sfc, respectively.

4. Results

4.1. Distribution of observation by residuals of

observation from background and analysis

The usage and weight of the observations in the analysis

can be demonstrated by the statistical residuals of observa-

tion minus background (OMB) and observation minus

analysis (OMA). The distributions of surface dir and spd

observations by the residuals of OMB and OMA in EX_uv

and EX_sd are presented in Fig. 5. From Fig. 5a, a large

number of dir observations with innovations (i.e. OMB)

exceeding 908, about 15.0% of all surface dir observations,

are assimilated in EX_uv. It appears that BKG-QC in

asm_uv does not have a particularly stringent impact on

the retention of dir observations.

By comparison, dir observations with innovations larger

than 908 are screened out directly by BKG-QC in EX_sd

(Fig. 5b), which significantly reduces the standard devia-

tion (s) and bias (m) of OMB and OMA. It is also worth

mentioning that for dir, OMA is even larger than OMB in

EX_uv (Fig. 5a), denoting that cost function minimisation

in asm_uv does not necessarily converge for dir.

With respect to spd, OMB is biased with the minimum

value of �7.1ms�1 and maximum of 5.4ms�1 in EX_uv

(Fig. 5c). Compared with a sharp cutoff of OMB at

�3.3ms�1 in EX_sd (Fig. 5d), where the BKG-QC dir-

ectly screens out spd observations meeting eq. (2), BKG-

QC of u and v in EX_uv are not able to effectively reject spd

observations with large spd OMB, representing a source of

strong bias.

As discussed earlier, when dir observations with innova-

tion exceeding 908 are assimilated in asm_uv, spd analysis

may be reduced because of the vector nature of u and v. The

negative bias in surface spd OMB means that the magni-

tudes of most spd observations are smaller than the back-

ground. Therefore, the spd analysis produced by asm_uv is a

8 F. GAO ET AL.
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closer fit to surface spd observations than the spd analysis

produced by asm_sd. As a result, a Gaussian-like pattern of

OMA with a relatively small bias (�0.11ms�1) is seen in

EX_uv (Fig. 5c).

By comparison, the bias of surface spd OMA in EX_sd

is located between the bias of surface spd OMB and zero

(Fig. 5d), demonstrating that the surface spd analysis is

reasonably distributed between the observations and back-

ground. Due to the fact that surface spd observations are

biased in this study, it is acceptable to assume that the spd

analysis will over-fit the observations if a near-zero bias

exists in OMA. In reality, the uncorrected bias in surface

spd observations can be used to prove that the assimilation

of biased spd observations is not the primary reason for the

large bias of the spd analysis in EX_uv.

The distribution of AMV dir and spd observations by

the residuals of OMB and OMA in EX_uv and EX_sd are

shown in Fig. 6. The AMV observations reveal a good fit to

the background, such that the BKG-QC in EX_uv and

EX_sd only account for a 0.37% difference in observation

counts. Although AMV dir OMB mainly appear inside

the bounds of 9608 (Fig. 6a and b), the dir observations

located in different quadrants from the background still

represent approximately 8.0% of all dir observations in

EX_uv, and these can be expected to generate some sig-

nificant impacts on spd analysis in EX_uv.

4.2. Verification of analysis

The statistical verification presented below is the difference

of the analyses and forecasts from RAOB in the form of

root-mean-square (rms) and average (bias). Considering

the launch time of rawinsondes, the verification is only

performed at 0000 and 1200 UTC each day.

The rms difference/error (hereafter referred to as rmse)

and bias of spd and dir analyses fit to RAOB in EX_uv and
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EX_sd is presented in Fig. 7. In Fig. 7a and c, the RAOB

data available on the two lowest height levels are used as a

reference to present the verification of near-surface wind

analysis, where the statistical differences between EX_uv

and EX_sd are assumed to be derived from the impact

of asm_sd on surface wind data assimilation. Likewise, in

Fig. 7b and d, the RAOB data available above the two

lowest height levels are used as a reference for verification

of upper-air wind analysis, where the statistical differences

between EX_uv and EX_sd are assumed to originate from

the impact of asm_sd on AMV data assimilation.

Based on rmse, both spd and dir analyses from EX_sd

come closer to RAOB than EX_uv, and the improvement

from EX_sd is notable for upper-air locations (Fig. 7b and

d) on 1200 UTC 2 August, when the associated precipita-

tion event is examined in Section 4.4. Additionally, the

biases of the spd analyses in EX_sd dramatically decrease

by 77.5% and 53.0% for near-surface and upper-air loca-

tions, respectively (Fig. 7a and b).

Compared with EX_sd, the bias of the spd analysis in

EX_uv presents as an inherent discrepancy (cf. Fig. 7a and b),

and is likely related to the assimilation method of u and v.

As stated above, the BKG-QC only makes a difference of

0.37% in AMV observation counts between EX_uv and

EX_sd; therefore, the bias of the spd analysis for upper-air

(Fig. 7b) is mainly a function of the assimilation methodol-

ogy of u and v. In other words, the larger improvements in

bias from EX_sd for the near-surface spd analysis also

include the impacts of BKG-QC. The BKG-QC results in

surface dir observations with innovations exceeding 908,
which account for 15% of all surface dir observation assi-

milated inEX_uv, but are rejected inEX_sd (cf. Fig. 6awith b).

These dir observations also produce an inherent impact on

the spd analysis in addition to spd observations in asm_uv.

4.3. Impacts of BKG-QC and assimilation methods on

analysis

The improvements from asm_sd are produced jointly from

the new method and BKG-QC. The time series of rmse and

bias of spd and dir analyses in EX_uv and EX_sd_uvobs is

presented in Fig. 8.
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The BKG-QC difference between asm_uv and asm_sd

may be ignored in the two experiments due to fact that the

same observations have been assimilated. Thus, the new

assimilation method is assumed to produce the analysis

differences between EX_uv and EX_sd_uvobs. As a result,

the impact of BKG-QC can be estimated linearly by

subtracting improvements produced by EX_sd_uvobs

from the improvements produced by EX_sd compared to

EX_uv. The improvements of dir analysis, shown by the

rmse decreasing from 6.9% in EX_sd to 5.0% in EX_

sd_uvobs, suggest that the new assimilation method pro-

duces a more positive impact on the dir analyses than BKG-

QC, which only contributes 1.9%.

In terms of spd, BKG-QC in asm_sd plays an important

role in improving the rmse of spd analyses by effectively

screening out biased spd observations (Fig. 5d). However,

the spd bias is largely unchanged with improvements of

54.8% in EX_sd and 54.4% in EX_sd_uvobs. This result

demonstrates that the improvement on spd bias is mainly

derived from the new assimilation method, i.e. the inde-

pendent impact of spd (dir) observations on the spd (dir)

analysis. This conclusion is also supported by Fig. 9, which

shows the spd OMA for EX_sd and EX_sd_uvobs, as well

as the dir OMA for EX_uv and EX_sd_uvobs.

Compared with EX_uv, the cost function related to dir

converges in EX_sd_uvobs; therefore, the standard devia-

tion of dir OMA in EX_sd_uvobs is smaller than that in

EX_uv (Fig. 9b). However, as seen in Fig. 9a, unlike in

EX_uv (Fig. 5c), the assimilation of dir observations with

large innovations (e.g. �908) in EX_sd_uvobs does not

prompt spd analyses to over-fit to spd observations. The

main differences of spd OMA between EX_sd_uvobs and

EX_sd have ranges of �6ms�1 and �2ms�1, and these

are actually derived from the assimilation of more spd

observations with large negative OMB, which are rejected

in EX_sd but used in EX_uv (Fig. 5c and d).

As stated above, the improvement on the bias of spd

analyses is the primary feature of asm_sd. As such, a quali-

tatively consistent conclusion should also exist when em-

ploying asm_sd for the assimilation of either surface wind

or AMV observations. The bias profile of spd analyses in

EX_uv, EX_sd, and EX_sd_sfc is shown in Fig. 10. Below

700hPa, the significant positive impact produced by asm_sd

on surface spd data assimilation can be seen by comparing

EX_uv and EX_sd_sfc. Compared to upper-air locations,

more improvements are generated on surface spd analyses

because BKG-QC in asm_sd plays a more important role

in screening out surface dir observations with large

dir innovations than AMV dir observations. In terms of

AMV, although there is a good fit to the background

(Fig. 6a), the dir observations that have different quadrants

from the background still generate a notable impact on

the bias of the spd analysis. This result strongly supports

the importance of the independent impact of the wind

observation variables on the wind analysis.

4.4. Verification of forecast

4.4.1. The statistical characteristics. The rmse and bias

of spd and dir forecasts of all cycles by forecast lead time

are presented in Fig. 11. The forecast improvements from

asm_sd are mainly reflected in the bias of spd and rmse

of dir, and are consistent with the conclusions for the

analyses. Although the forecast differences decrease with

lead time because the same lateral boundary conditions are

employed for the comparative experiments, the bias of spd

forecast in EX_sd are still present at 48 h.

From the vertical profiles of 12-h forecast scoring

(Fig. 12), dir forecast rmse in EX_sd is improved over

EX_uv at all height levels, and the biases around 1000 hPa

and 500 hPa in EX_sd are only little larger than EX_uv.

The significant improvements on biases of the spd forecast

in EX_sd can still be seen at all height levels; however, the

near-surface improvements are reduced by the restriction of

the lateral boundary condition (cf. Fig. 7a). The improve-

ment in the rmse of spd forecasts in EX_sd are especially

appreciable in light of the non-optimal configuration and

tuning in EX_sd. Similar forecast scoring is seen for

asm_sd without the negative impacts on spd forecasts,

such as those near 400 hPa (Fig. 12a).
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4.4.2. A case for illustration. In this section, we explore

how the improved wind analysis and forecast affect

precipitation prediction. In WRFDA, the background

error covariance does not include the covariances between

moisture and other state variables. Therefore, the different

moisture analyses between asm_uv and asm_sd are derived

from the cycling assimilation, where the wind forecast

adjusts the distribution of moisture, and then the updated

moisture forecast is accumulated into the subsequent

timestep’s background and analysis.

At 1200 UTC 2 August 2013, a stream of warm moist

air flowed towards the Kansas/Missouri (KS/MO) border

where a cold dry air mass was in place. A frontal shear

line developed over northern Illinois (IL) and Indiana

(IN) along the boundary between the two air masses.

The 24-h accumulated precipitation was heaviest (116mm)

near KSGF station in Springfield, MO (black dot in

Fig. 14a).

The vertical profiles of 12-h spd and dir forecasts valid at

1200 UTC 3 August 2013 fit to RAOB at KSGF station are

shown in Fig. 13. Generally, the spd and dir predictions are

improved in EX_sd mainly below 400 hPa. From Fig. 13a,

both EX_uv and EX_sd under predicted spd. As a result,

the warm moist air advection was reduced in the model.

The negative difference between the dir forecast in EX_sd

and RAOB below 700 hPa indicates that the predicted dir

points to the north-northwest of the observed wind vector,

which leads to a more westerly-tilting weather system

with respect to observations. Compared to EX_sd, the spd

and dir forecasts from EX_uv further exacerbate these

problems.

A plot of precipitation, wind vectors, and specific

humidity in the mixed layer is shown in Fig. 14. Three

main differences in the prediction of precipitation location

and intensity between EX_sd and EX_uv can be seen along

the border of KS and MO, the northern portions of IL and

IN, and in southern South Dakota (SD). As discussed for
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Fig. 13, the weaker warm moist air advection in EX_sd

reduces the precipitation intensity along the border of KS

and MO in EX_sd. Meanwhile, the northwest-tilting dir,

and the corresponding specific humidity gradient, lead to

a prediction of the main precipitation area being located

northwest of the observed precipitation maximum from

the Stage IV analysis near KSGF (Fig. 14c). As expected,

the further westerly-tilting dir forecast in EX_uv fails to

properly develop the primary precipitation zone in central

KS (Fig. 14b).

Another key difference can be seen in southern SD,

where weak winds exist in EX_sd (Fig. 14c). However, the

stronger wind shear, coinciding with a moisture maxima,

produces the main precipitation core over southern SD
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Fig. 12. The vertical profiles of rmse and bias of 12-h wind speed and direction forecasts in EX_uv and EX_sd fit to rawinsonde

observations (RAOB).
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in EX_uv (Fig. 14b). These results demonstrate that the

improved wind forecast is able to improve the precipitation

forecast by adjusting the wind-related factors driving the

intensity and location of precipitation development via

moisture advection.

5. Conclusion and outlook for further research

This paper presents a series of real-data experiments to

evaluate the assimilation of wind observations in the

forms of wind speed (spd) and direction (dir). The potential

benefits of this method were verified over a continental

United States domain for a 2-week period in the cycling

assimilation. Satellite-derived Atmospheric Motion Vectors

(AMV) and surface data from Meteorological Assimilation

Data Ingest System (MADIS) were assimilated, and their

spd and dir observation errors were estimated for the

purpose of assigning similar assimilation weights for wind

observations in asm_uv and asm_sd. Using rawinsonde

observations (RAOB) and National Centers for Environ-

mental Prediction (NCEP) Stage IV analysis as references,

the statistical verification of the wind analyses, forecasts

and a precipitation case study are presented.

Results demonstrate that the asm_sd produces better

analyses and forecasts compared to asm_uv based on rmse

and bias. Improvement up to 54.8% is generated by asm_sd

for the bias of spd analyses, and persists through the 48-h

forecasts despite using identical lateral boundary condi-

tions. In a pilot test (EX_sd_uvobs) employing asm_sd, but

assimilating the same observations as EX_uv, we show that

the significant improvement in bias of spd analysis was

primarily from the new assimilation method.

The background quality control (BKG-QC) in WRFDA

is also a key factor in improvements of asm_sd over

asm_uv. In the total rmse improvement of 3.7% for spd

analyses and 6.9% for dir analyses, the 2.3% and 1.9% for

spd and dir analyses are derived solely from the BKG-QC

of asm_sd, respectively. Generally speaking, some benefits

from asm_sd were produced from BKG-QC screening wind

observations, but most benefits originated from the new

assimilation method itself.

The indirect impacts of asm_sd on precipitation predic-

tion were examined using an event which occurred during

the experimental period. Results suggest that the asm_sd

is able to improve the forecast of precipitation intensity

and location by improving the prediction of wind-related

dynamics.

Given the limitations of the experimental design, some

differences may exist with operational applications. The

observational errors are not optimally tuned when it comes

to the assimilation weights between observations and

background. The equivalent wind observation errors

estimated and presented here for asm_uv and asm_sd

are more focused on making a fair comparison of the

assimilation scheme.

The BKG-QC in asm_sd needs to be further studied. It is

likely that the innovation threshold of 908 for dir observa-
tions is too strict to retain most useful observations. For

example, in the precipitation case presented, some good

dir observations with an innovation score above 908 were

observed in the vicinity of the frontal system when a phase

difference exists between the observations and the back-

ground. Further investigations of the estimation and tuning

of spd and dir observation errors for all wind observation

types and the corresponding BKG-QC scheme should be

conducted.

Additionally, although the mass variables in the sur-

face dataset are also assimilated along with the wind

observations, the proportion of wind-to-mass observations

in this study is skewed towards the impact of wind ob-

servations versus what would be expected in an operational

configuration.

Another interesting topic exists regarding BKG-QC of

wind observations in asm_uv that deserves investigation. As

discussed, the BKG-QC in asm_uv is conducted for the u

and v components separately, which means that either u or v

could be rejected or assimilated without the other. However,

it seems unreasonable to assimilate the other variable when

its respective component is rejected because the u and v

components are calculated from a single observational pair

of spd and dir, and the observation error in either spd or dir

can simultaneously affect the errors in both u and v. Is alone

u or v able to usefully contribute to wind vector analyses

when one of them is rejected? Or is it more helpful to reject

both of them when one of them fails QC? The question is

not addressed here, but is worthy of further discussion.
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